

Triglyceride Assay Kit

Catalog # EA-7010

Plasma Sample Preparation

(For Research Use Only)

- Centrifuge citrated or EDTA-collected blood at 4°C (1,000 x g for 10 minutes) to separate plasma from erythrocytes. Alternatively, blood collected without anticoagulant can be centrifuged to collect serum
- 2. Transfer the plasma layer to a new tube without disturbing the buffy layer.
- 3. The plasma may be assayed directly or stored away at -80°C.

Cell Sample Preparation

- 1. From a 96-well culture plate, detach adherent cells with trypsin. For suspension cells, centrifuge at 1,000 x g for 5 minutes to pellet cells.
- Wash the cells twice with cold PBS to remove residual media.
- 3. Resuspend the cells in 1 mL of PBS and homogenize using a tissue grinder or sonicator.
- 4. Add 2 mL of chloroform and 1 mL of methanol to the homogenized cell sample and mix thoroughly by vortexing for 30 seconds.
- Add 0.5 mL of ddH₂O to the mixture and vortex again for 30 seconds to induce phase separation.
- 6. Centrifuge the sample at 1,500 x g for 10 minutes at room temperature to separate the phases.
- 7. Carefully collect the lower chloroform phase containing the lipids and transfer to a new tube.
- Vacuum dry the lipid sample until all of the chloroform is evaporated.
- 9. Reconstitute the dry lipid sample in PBS.
- The lipid sample may be assayed directly or stored at -80°C.

Tissue Sample Preparation

- 1. Weigh 100 mg of tissue and place in a tube.
- 2. Add 1 mL of cold methanol and homogenize using a tissue grinder.
- 3. Add 2 mL of chloroform to the homogenized tissue sample and mix thoroughly by vortexing for 30 seconds.
- 4. Add 0.5 mL of ddH₂O to the mixture and vortex again for 30 seconds to induce phase separation.
- 5. Centrifuge the sample at 1,500 x g for 10 minutes at room temperature to separate the phases.
- Carefully collect the lower chloroform phase containing the lipids and transfer to a new tube.
- 7. Vacuum dry the lipid sample until all of the chloroform is evaporated.
- 8. Reconstitute the dry lipid sample in PBS.
- . The lipid sample may be assayed directly or stored at -80°C.

Introduction

The Triglyceride Assay Kit utilizes a series of enzyme reactions to measure triglyceride levels in samples. First, the triglyceride is hydrolyzed by lipoprotein lipase into glycerol. Then, the glycerol is converted to glycerol-3-phosphate by glycerol kinase. Lastly, the glycerol-3-phosphate is oxidized by glycerol-3-phosphate oxidase, which produces hydrogen peroxide. The triglyceride level in the sample is determined by quantifying the hydrogen peroxide generated by the enzyme reaction with a fluorogenic probe that can be measured with a spectrophotometer.

Materials Required but Not Provided

- PRS
- 96-well clear microplate for absorbance reading or 96well black microplate with clear bottom for fluorescence reading
- Microplate reader capable of measuring absorbance at 560 nm or fluorescence at 530nm/590nm

Materials Provided

- KRPG buffer (RT)
- DMSO (RT)
- 100mM ATP (-20°C)
- Probe Reagent (-20°C)
- HRP Reagent (4°C)
- Triglyceride Standard (RT)
- 1x Lipase Enzyme Stock (-80°C)
- 1x GKi Enzyme Stock (-80°C)
- 1x GPOx Enzyme Stock (-80°C)

^{**}Spin down small tubes before starting experiment. **

Triglyceride Measurement

1. Standard curve preparation: First, prepare a 0.5x triglyceride standard by mixing 10 μL of the provided triglyceride standard with 10 μL of DMSO. Then, take eight new tubes labeled 1-8 and add 10 μL of DMSO to each tube. Transfer 10 μL of the 0.5x standard to the first DMSO tube and mix to make a 0.25x standard. Then, transfer 10 μL of the 0.25x standard from the first tube to the second DMSO tube and mix to make a 0.125x standard. Continue the serial dilutions until the seventh tube is done. Leave the eight tube untouched as the DMSO negative control.

Standard#	Triglyceride
	Concentration (X)
1	0.25
2	0.125
3	0.0625
4	0.03125
5	0.01563
6	0.007813
7	0.003906
8	0

 Reaction mix preparation: calculate the amount of each reagent needed to make the reaction mix according to the table below.

Component	Reaction Mix (per well/sample)
100mM ATP	0.5 μL
1x Lipase Enzyme	1.5 μL
1x GKi Enzyme	0.05 μL
1x GPOx Enzyme	0.05 μL
KRPG Buffer	47.9 μL
Total	50 μL

- Any unused enzyme stock can be stored at -80°C for future use.
- Add 50 μL of reaction mix to each well of the plate.
- 5. Add 5 μ L of sample or standard to each well with reaction mix and mix thoroughly.
- Cover the plate and incubate at room temperature for 30 minutes.
- Detection mix preparation: calculate the amount of each reagent needed to make the detection mix according to the table below.

Component	Detection Mix (per well/sample)
Probe Reagent	0.5 μL
HRP Reagent	1 μL
PBS	48.5 μL
Total	50 μL

- 8. Add 50 μ L of detection mix to each reaction well in the plate. Be sure to add the detection mix quickly, since the signal begins to develop when the reagents are added. Use a multichannel pipette if possible.
- 9. Cover the plate and incubate at room temperature away from light for 10-20 minutes.
 - Exposure to light will produce background signal in wells
- 10. For a stronger signal, the plate can be incubated for another 30-60 minutes away from light.
- 11. Measure the absorbance of the plate at 560 nm using a plate reader. Alternatively, measure the fluorescence of the plate in a fluorescence plate reader Ex/Em 530nm/590nm.